Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World’s leading Event Organizer


Amir Elsaidy

Military Technical College, Egypt

Title: Novel carbon nanomaterials coated with CuO particles via electroless plating for nanothermite applications


Biography: Amir Elsaidy



Carbon nanomaterials (CNMs), such as carbon nanotubes (CNTs) and carbon nanofibers (CNFs) can be employed as carriers for superthermite particles via coating or encapsulation. This study reports on the synthesis of copper oxide coated CNTs and CNFs via electroless plating which offer metallization with uniform distribution layer of copper. The copper coated CNTs and CNFs were annealed at 250°C to obtain copper oxide coated CNMs. The developed hybrid CNMs were characterised with TEM which demonstrated uniform coating with CuO particles. XRD diffractograms demonstrated highly crystalline CuO particles superimposed on the surface of CNMs. CuO coating can act as an effective oxidizer for aluminium particles in superthermite applications. The developed CuO-coated CNMs  were effectively dispersed in isopropyl alcohol with aluminium particles (100 nm) using ultra sonic probe homogenizer. The developed hybrid nanothermite materials were effectively integrated and dispersed into molten TNT. Whereas CuO-coated CNFs/Al binary mixture demonstrated an increase in shock wave strength by 6.5 % using kast test; CuO-coated CNTS/Al binary mixture demonstrated an increase in destructive effect of TNT by 15.5 %. The superior performance of CuO-coated CNTs was ascribed to the fact that CNTs can offer extensive interfacial surface area of 700 m2/g. Consequently it could act as an ideal carrier for highly energetic particles.